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Ranking system is considered as one of the most important tools to control and manage risk in banks. Ranking is the separation and classification of customers into various groups. This study is presented a solution for improving the accuracy of ranking customers of banks based on the hybrid neuro-fuzzy networks modeling and optimization algorithms. In this regard, two major parts namely selecting the features and rating were targeted. In features selection, particle swarm algorithm is used in addition to genetic algorithm, which is used frequently in the field of risk management. Also, neuro-fuzzy network technique is used to ranking. The mentioned solution was applied on the data obtained from the customers of one of the German banks with a population of 1,000 people; then, they were evaluated. The results showed that particle swarm algorithm has a better performance to achieve the goal, fewer features and errors in selecting features. Also, in modeling customers' ranking, neuro-fuzzy network technique provides more favorable results than the neural network technique.   
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1.	Introduction 

*Credit risk analysis is a major issue in risk management and it has a special importance in the banking industry. Today, most banks have a lot of information about customers, which it contains personal information and their performance. Accreditation or customers' credit ranking is considered as one of the main concerns of these institutions. Indeed, ranking means the level of assessing the applicants' ability to repay loans and financial facilities and the probability of failure to repay the credits, which are received by them (Thomas et al., 2002). Finding the patterns and knowledge lies in this information leads to identify the needs of customers, credit risk assessment and understand market's trend of change, and finally it makes a significant contribution for decision makers in the realm of financial management After emerging extremely powerful techniques of information processing and overflowing customers'  information, on the one hand and developing credit facilities market, as well as increasing rates of irreversible and outstanding claims, on the other hand, credit institutions decide to accredit their customers (Akkoç, 2012). Thus, data mining technique was considered by the institutions. Data mining refers to analyze massive amounts of data in order to explore meaningful and hidden rules and patterns within 
                                                 * Corresponding Author.  Email Address: ali.habibi11@yahoo.com (A. Habibi) 

them (Witten and Frank, 2005). Classification is considered as one of the data mining techniques. Since, classifying customers into various categories is the purpose of ranking; it is categorized under the classification. Credit level model was introduced for the first time in the 1940s, it was decided to pay loans in 1979 using variable such as loan amount, age, gender, marital status, number of dependents, number of resident years, amount of monthly payment for the house, rental or ownership residential, other monthly earnings, the total payments for debts in a month, type of bank accounts, and amount of annual profit (Ang et al., 1979). Various techniques of data mining are used in accreditation of bank customers. They are classified using regression and classification tree technique on features of gender, age, marital status, education level, employment status, job status, annual income, and housing status. This research is used information of 80,000 customers in a Taiwanese bank for making and evaluating customers' accreditation model. Review of literature revealed that regression method had a better performance than techniques such as rules mining, SVM (He et al., 2014). Moreover, the use of neural networks in this area has been very successful. For example, this technique is used on inputs including loan amount, term of loan repayment, bank branch code, gender, marital status, age, monthly income, housing status (owned or rented house) to accredit the customers of an Egyptian bank. Conventional methods such as discriminant analysis, logit regression and analyze 
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variable of x with the maximum value of 1 and the minimum value of 0. Fixed nodes in the second layer calculate the level of threshold for each rule by multiplying the input values and consider them as the output. Function of each node in this layer is finding the weight (W) for the fuzzy rules by using the membership functions. Achieving these values would be possible through the following formula (Eq. 2): W୍ = Μ(X) × Μ(Y)   , i = 1,2, …                       (2) The weights obtained from the second layer are normalized by the third layer nodes along with using the following formula (Eq. 3): Wഥ୍ = భାమ                                                                  (3) The node i in the fourth layer calculate the contribution of the rule i in the final output through the following node function. Wi is the output of the third layer, {pi, qi, ri} are a set of parameters, known as outcome parameters 1. This layer shows the results of the rule in the ANFIS model (Eq. 4). Oସ୍ = Wഥ୍F୍ = Wഥ୍(P୍ X + Q୍Y + R୍)                    (4) 

 Only the node in the fifth layer obtains the final output through calculating the outcome of input signals and by using the following formula (Eq. 5): Oସ୍ = overall output = ∑ Wഥ୍F୍ = ∑ ∑ ୍               (5) The neural network, which is used for ranking the customers, is a progressing network with two hidden layers; the first layer consists of five neurons and sigmoid transfer function and the second layer or the purpose layer includes one neuron and the linear transfer function. In the training stage, part of the data is given to the network. Then, network weights are adjusted by using network learning algorithm, so that the error between the predicted output and purpose be minimized. Now that the network is trained, a series of not-analyzed inputs are applied into the network in the form of test data for evaluating the correctness of training.  After implementing the program in MATLAB and setting relevant to the two models, their output performance are shown in Fig. 2 and 3; and also, the final results are presented in Table 2. 
	

Table	2: Results of models performance Results Training error Test error Time of processNeuro-fuzzy network 0.55 0.59 1.67 Neural network 0.68 0.67 5.76    

 
Fig.	3:	Comparing the error of neuro-fuzzy network and neural network models  

 
Fig.	4: Comparing the time of process in neuro-fuzzy network and neural network  

As it can be seen in Table 2 and Figs. 3 and 4, neuro-fuzzy network model has a better performance than the neural network. 
4.	Results	This article is proposed a solution based on the neuro-fuzzy network for ranking the customers in a German bank (including 1,000 customers). The proposed solution is used particle swarm and genetic algorithm to select the features of bank's customers. Also, it is used the neuro-fuzzy network and neural network for ranking model. Results indicate that particle swarm algorithm is better for feature selection and the neuro-fuzzy network model provides better outcomes for ranking. 
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